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Cellular solids with tunable positive or negative thermal expansion

of unbounded magnitude
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Material microstructures are presented with a coefficient of thermal expansion larger in magnitude
than that of either constituent. Thermal expansion can be large positive, zero, or large negative.
Three-dimensional lattices with void space exceed two-phase bounds but obey three-phase bounds;
lattices and normal materials have a trend of expansion decreasing with modulus. Two-phase
composites with a negative stiffness phase exceed bounds that assume positive strain energy density.
The author determined Young’s modulus and its relation to thermal expansion. Behavior of these
composites is compared with that of homogeneous solids in expansion-modulus maps. © 2007
American Institute of Physics. [DOL: 10.1063/1.2743951]

Thermal expansion of materials is of practical interest
since materials in service may experience temperatures
which vary considerably. If dimensional stability is desired
in a design, then materials of zero or minimal thermal expan-
sion are of interest. Actuators controlled by temperature
changes can make use of materials with large thermal expan-
sion. Thermal expansion is described as follows. The strain
g;; in an isotropic solid depends on stress o;; (elasticity) and
on temperature change AT (thermal expansion),

v
Eij= g — EO'ii_aAT 5,'1, (1)

in which v is Poisson’s ratio, E is Young’s modulus, « is the
thermal expansion coefficient, and &; is Kronecker’s delta.'
Thermal expansion of crystalline solids is attributed to the
anharmonicity of the interatomic potential and is therefore
considered to be a property intrinsic to each material. In
common materials, expansion tends to decrease with elastic
modulus. Some materials have negative expansion. Zirco-
nium tungstate, in contrast to other negative expansion sol-
ids, has a negative expansion over a temperature range of
more than 1000°.”"*

Analytical bounds on the physical properties of compos-
ite materials provide limits on properties attainable with
variation of phase geometry. For example, the classical
Voigt-Reuss and Hashin-Shtrikman bounds provide limits on
the elastic modulus of composites.s_7 Such bounds can be
useful in the study of complex synthetic composites or bio-
logical tissues in which the structure is so complex that one
cannot easily analyze the relation between structure and
physical properties. Bounds are known for the thermal ex-
pansion coefficient & of composite materials® of two solid
phases in terms of constituent expansions «; and «,. The
upper bound is a rule of mixtures
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a= a1V1+a2[1—V1], (2)

in which V; is the volume fraction of phase 1. In the deriva-
tion of these bounds it is assumed that the two phases are
perfectly bonded, that there is no porosity, and that each
phase has a positive definite strain energy. Relaxation of any
of these assumptions permits one to achieve arbitrarily large
or small values of expansion, as is shown in the following.
Three-phase bounds (which also assume positive definite
strain energy)g’10 are more general; they allow void space.
Lattices presented below, as with common materials, follow
a trend of decreasing modulus as expansion increases.

Cellular solids contain void space. If the ribs (struts) in a
foam or honeycomb are homogeneous, then the thermal ex-
pansion of the cellular solid"! is the same as that of the solid
from which it is made. Arbitrarily high thermal expansions
can be achieved in composites containing two solid phases
and void space.12 Given this concept, it becomes possible to
design composites with the aid of topology optimization.13
Dense composites with slip interfaces can also exhibit ex-
treme values of expansion.14 These solids contain rib ele-
ments of composite microstructure. Each rib element is a
bilayer made of two bonded layers of differing thermal ex-
pansion coefficient. Curved rib elements of this type undergo
a length change in response to temperature change. This
length change gives rise to the thermal expansion of the lat-
tice as a whole. Several hexagonal cell structures based on
this concept are shown in Fig. 1. Figure 1(a) depicts a regular
hexagonal cell with curved ribs, each of which consists of
two dissimilar materials with different thermal expansion co-
efficients. The center of curvature is not in general at the
center of the cell. Figure 1(b) depicts an inverted reentrant
cell of a negative Poisson’s ratio honeycomb. Figure 1(c)
depicts a hexagonal cell with nested rib elements. The nested
elements can fill the entire space; void space opens up upon
expansion. If the lattice is to be capable of contraction, there
must be some initial void space. As for three-dimensional
foam lattices, we envisage a lattice cell with bimaterial ribs,
as shown in Fig. 2. This cell is of tetrakaidecahedral shape,
similar to the cell shape in open cell foams.
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FIG. 1. Hexagonal lattice cells with curved bimaterial ribs: (a) regular hex-
agonal cell, (b) inverted hexagonal cell for negative Poisson’s ratio, and (c)
nested lattice cell.

The thermal expansion is determined as follows. A
single rib element containing two dissimilar materials of dif-
ferent thermal expansions «;, a, and thicknesses %, h, will
curve in response to a temperature change.15 The change of
length of an initially curved rib element of arc length [,
gives rise to an effective thermal expansion in terms of the
included angle 6, a measure of rib curvature, in which the
layers are of equal thickness and of equal elastic modulus

Lare 1 0 1
— | scot———|.
(hy+hy)| 2 2 0
This expansion is positive if the material on the inner (con-
cave) portion of the curve has the higher value of expansion,

3)

a=(a-a)
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since an increase in temperature will cause the rib to
straighten. By contrast, if the constituent with the higher
thermal expansion coefficient is on its outer or convex side,
an increase in temperature will cause the rib to curve more
and become shorter, giving rise to a negative thermal expan-
sion coefficient. If the angle is not too large, this expression
assumes a simpler form, with t=h,+h,,

a=(t)(a; — ay)(0/12). (4)

The elastic modulus E for honeycomb (a two-dimensional
lattice) with hexagonal cells of material with modulus E; of
thickness ¢ and length [ is governed by rib bending and is
determined via''

E/E, =2.3(t/])°. (5)

The ribs of a three-dimensional lattice containing curved bi-
material rib elements give rise to a thermal exPansion fol-
lowing Eq. (3). The elastic modulus is given by'®

E/E,=0.76p*(1 + 1.09p)7", (6)

in which the relative density is p=0.46(¢/1)>.

Thermal expansion of these lattices is plotted versus
elastic modulus E in Fig. 3(a). For the rib materials, a
Young’s modulus of 200 GPa is assumed, corresponding to
steel, and an expansion difference of 1073 is assumed, corre-
sponding to a steel-Invar based rib; the angle 6 is one radian.
For comparison, the behavior of several known solid
materials * is also plotted. As shown in Fig. 3(a), one can
increase the expansion by making the ribs more slender (a
smaller aspect ratio ¢/1); doing so reduces the modulus. The
expansion can be reduced by reducing the rib curvature; rib
stiffness hence modulus is relatively insensitive to curvature.
Zero expansion is possible. Therefore the region to the left of
and below the diagonal line representing each lattice is ac-
cessible. A portion of the region to the right, corresponding
to a higher modulus, is accessible via nested lattices. A lat-
tice with slender ribs can be nested to a greater degree than a
lattice with thick ribs. These hexagonal cells are elastically
isotropic in plane in contrast to the cubic cells'* considered
earlier. The hexagonal lattice is anisotropic in the third direc-
tion so isotropic bounds do not apply to it. Expansion of the
foam is less in magnitude than the isotropic three-
dimensional three-phase bound’ as shown.

Negative thermal expansion can be easily achieved in
the lattices by placing the material of higher expansion on
the outer portion of the curve. Negative expansion is not
connected with negative Poisson’s ratio which can occur in
honeycombs or foams with uniform, rather than bimaterial,
ribs."® Behavior of lattices and other materials in this regime
is shown in Fig. 3(b). Few homogeneous materials are avail-
able for comparison. Zirconium tungstate is of greatest inter-
est in this context™'? since it exhibits negative expansion
over a wide temperature range.

Controllable thermal expansion can also be achieved in
two-phase composites with inclusions of negative stiffness®
and no void content. Such composites have been made in the
laboratory and shown to have extremely high damping
capacity, ' too, extreme Young’s modulus® exceeding that of
diamond. The composite thermal expansion «, is related to
the bulk modulus K and expansion « of phases 1 and 2 as
follows, with K. as the bulk modulus of the composite”
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FIG. 3. (Color online) Expansion-modulus maps of lattices and known ma-
terials: (a) positive expansion and (b) negative expansion. Numbers refer to
aspect ratio #/1. Solid circles @, homogeneous materials; open circles O,
honeycomb; open squares [, foam; solid triangles A, composite with nega-
tive stiffness inclusions; and solid squares M, three-dimensional isotropic
three-phase bound.
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ac=a1+1—2<———). (7)
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Assuming a matrix Young’s modulus of 200 GPa and expan-
sion 1075, and allowing inclusions 10% by volume with
negative bulk modulus, the expansion and Young’s modulus
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are calculated for a Hashin-Shtrikman composite23 and plot-
ted in Fig. 3. These composites allow both positive and nega-
tive thermal expansions combined with large magnitudes of
elastic modulus. The temperature range is likely to be narrow
if these materials are based on phase-transforming inclu-
sions. These composites can be stabilized,** so it may be
possible to achieve such composites in other ways.

To conclude, large regions of the expansion-modulus
map have been made accessible via two- and three-
dimensional cellular solids and by composites in which one
phase has a negative bulk modulus. Positive or negative
expansion values of arbitrarily large magnitude or zero are
possible.
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